Sum Squared Digits Function

The Sum Squared Digits function, $SSD(b, n)$ of a positive integer $n$, in base $b$ is defined by representing $n$ in base $b$ as in:

\[ n = a_0 + a_1 * b + a_2 * b^2 + \ldots \]

then:

\[ SSD(b, n) = a_0^2 + a_1^2 + a_2^2 + \ldots \]

is the sum of squares of the digits of the representation.

Write a program to compute the Sum Squared Digits function of an input positive number.

Input

The first line of input contains a single decimal integer $P$, ($1 \le P \le 1\, 000$), which is the number of data sets that follow. Each data set should be processed identically and independently.

Each data set consists of a single line of input. It contains the data set number, $K$, followed by the base, $b$ ($3 \le b \le 16$) as a decimal integer, followed by the positive integer, $n$ (as a decimal integer) for which the Sum Squared Digits function is to be computed with respect to the base $b$. $n$ will fit in a $32$ bit unsigned integer. The data set number $K$ starts at $1$ and is incremented by $1$ for each data set.

Output

For each data set there is a single line of output.

The single line of output consists of the data set number, $K$, followed by a single space followed by the value of $SSD(b, n)$ as a decimal integer.

Sample Input 1 Sample Output 1
3
1 10 1234
2 3 98765
3 16 987654321
1 30
2 19
3 696