Problem C
Peak Tram
Inspired by the Peak Tram in Hong Kong, you are going to build your own peak tram on a hill, together with the buildings near it. The peak tram and the buildings are aligned on a straight line. The peak tram is at position $0$ on the line. There are $n$ buildings, where building $i$ is at position $i$ on the line ($i=1,2,\dots ,n$). Let the height of building $i$ be $h_ i$. The peak tram starts ascending from height $0$, and the passengers would look at the building that first touches the horizontal ray from the peak tram at the current height. In other words, building $i$ is visible some time during the ascent if and only if $h_ i > h_ j$ for all $j < i$ (i.e., no other buildings are blocking the sight). Assume the hill is sufficiently tall so the peak tram can always ascend to at least the height of the tallest building.
![\includegraphics[width=0.55\textwidth ]{tram}](/problems/peaktram/file/statement/en/img-0001.png)
You want the passengers to enjoy the view from the peak tram, so there should be at least $k$ buildings that are visible some time during the ascent. However, the problem is that you do not have any building yet, and you now have to build those $n$ buildings (i.e., you have to choose $h_ i$). Each building $i$ has a preferred height $p_ i$ and a cost per height difference $c_ i$. The cost for making the height of building $i$ to be $h_ i$ is given by $|h_ i - p_ i| \times c_ i$. Also the heights $h_ i$ you choose must be positive integers. Your task is to determine the minimum total cost so that at least $k$ buildings are visible during the ascent.
Input
The first line of the input contains two integers $n$ and $k$ ($1 \leq k \leq n \leq 70$). Each of the following $n$ lines contains two integers $p_ i$ and $c_ i$ ($1 \leq p_ i \leq 10^9$, $1 \leq c_ i \leq 1\, 000$).
Output
Output one integer, the minimum total cost so that at least $k$ buildings are visible during the ascent.
Sample Input 1 | Sample Output 1 |
---|---|
5 3 5 3 3 2 4 8 9 4 6 2 |
6 |