Problem G
Game Design
Carol enjoys playing with wooden games. The objective of the game that fascinates her the most is to tilt a maze, made out of $1\text { cm}$-by-$1\text { cm}$ blocks, in any of the four cardinal directions to move a ball to a hole in the centre at $(0, 0)$. As shown in Figure 1, once the $1\text { cm}$ wide ball starts moving, it keeps going until either it runs into a wooden block, or it falls into the hole—whichever comes first.
Carol is interested in designing a maze of her own, and like any good game designer she already has a fixed solution in mind. This is given as a sequence of tilt moves which must all be followed in order. If any move causes nothing to happen, for example because the ball is up against a block in that direction or already in the hole, the solution does not count.
The ball can be placed anywhere to start. Carol will take care of adding a square border of blocks covering the rows and columns $10^9+1$ cells away from the centre in each direction.
Design a board which can be won by applying her sequence of moves.
Input
The input consists of:
-
One line with a string $s$ consisting of only the characters “LRUD” ($1 \le |s| \le 20$), the sequence of moves. These characters correspond to the directions $-x, +x, +y, -y$ respectively. No two consecutive characters in $s$ are the same.
Output
If it is possible to create a maze with the given solution, first output $x$ and $y$, the integer coordinates for the ball to start at. Then on the next line, output $n$, the number of blocks to use. On each of the remaining $n$ lines, output $s$ and $t$, the integer coordinates of a block.
Otherwise, output “impossible”.
You may use at most $n \le 10^4$ blocks. All coordinates used must be at most $10^9$ in absolute value. No coordinate pair may be the same as the centre or any other coordinate pair. If there are multiple valid solutions, you may output any one of them.
| Sample Input 1 | Sample Output 1 |
|---|---|
DLDLRUR |
-3 1 8 -1 -1 -1 -2 -2 1 -3 -1 -5 0 -6 -1 -7 -2 -4 -3 |
| Sample Input 2 | Sample Output 2 |
|---|---|
LRLRLRLRULD |
1 1 5 2 1 2 0 -1 1 -1 0 -1 1000000000 |
| Sample Input 3 | Sample Output 3 |
|---|---|
LRLR |
impossible |
