Problem H
An Easy Array Problem
This is an array problem.
Given $N$ numbers, $A_1, \dots A_ N$, answer $Q$ queries as follows:
Given $L, R$ where $R - L + 1 \geq 4$, among all possible $L < X < Y < R$, maximise $A_ L \times A_ X \times A_ Y \times A_ R$. Output on a single line this maximised value.
Constraints
$1 \leq N, Q \leq 5 \times
10^5$
$-10^4 \leq A_ i \leq
10^4$
$1 \leq L_ i < L_ i+3 \leq R_
i \leq N$
Input
The first line contains two space-separated integers,
$N$, the number of
numbers, and $Q$, the
number of queries
The second line contains $N$ space-separated integers,
$A_1, A_2, \dots , A_
N$
$Q$ lines follow, the
$i^{th}$ line contains 2
space-separated integers, $L_ i,
R_ i$, which are the $L,
R$ values for the $i^{th}$ query
Output
Output $Q$ lines, each containing a single integer which is the answer for the $i^{th}$ query.
Sample Input 1 | Sample Output 1 |
---|---|
7 3 -1 2 1 4 -2 -3 2 1 7 2 7 1 6 |
24 24 24 |
Sample Input 2 | Sample Output 2 |
---|---|
10 10 564 7167 -4069 -3244 579 199 -9838 2913 9796 4734 2 6 1 6 2 7 1 7 4 10 1 9 5 10 1 7 4 9 5 9 |
18826041697788 1481496793296 166115621837646 161812108318536 1480010149948608 221168049823968 78216085767528 161812108318536 910703330545056 3287917420308 |