Tetris is a popular computer game played in a field
consisting of $C$ columns
and an unlimited number of rows. In one move, one of the
following seven pieces is dropped into the field:
When dropping a piece, the player is free to rotate the
piece $90$, $180$ or $270$ degrees and to move it left or
right, as long as the piece stays entirely in the field. The
piece then falls until it settles on the bottom of the field or
on already occupied squares. In our variant of Tetris the piece
must fall so that all parts of the piece are on the bottom of the
field or on already occupied squares. In other words, after the
piece has fallen there may not be a free
square such that some square above it
is occupied.
For example, let the field be six columns wide with initial
heights (the number of already occupied squares in each column)
$2$, $1$, $1$, $1$, $0$ and $1$. Piece number $5$ can then be dropped into the field
in five different ways:
You are given the initial heights of all columns and the
figure to be dropped into the field.
Write a program that calculates the number of different ways
to do this, i.e., the number of different field configurations
that can be achieved by dropping the piece.
Input
The first line contains two integers $C$ and $P$, $1
\le C \le 100$, $1 \le P
\le 7$, the number of columns and the number of the
piece to be dropped.
The second line contains $C$ integers separated by single
spaces, each between $0$
and $100$, inclusive.
These are the initial heights of the columns.
Output
Output on a single line the number of different ways to drop
the piece in the field.
Sample Input 1 
Sample Output 1 
6 5
2 1 1 1 0 1

5

Sample Input 2 
Sample Output 2 
5 1
0 0 0 0 0

7

Sample Input 3 
Sample Output 3 
9 4
4 3 5 4 6 5 7 6 6

1
