Hide

Problem K
Simple Arithmetic

Languages en et is ja lv pl ru sv

You are given three integers $a, b, c$ ($1 \le a, b, c \le 10^9$). Compute $a \cdot b / c$, with an absolute precision of $10^{-6}$.

Input

The first and only line of input contains the three integers $a, b, c$ separated by a single space.

Output

Output a single floating point number. It must differ from $a \cdot b / c$ by at most $10^{-6}$ in absolute value, i.e., it should obey $|x - a \cdot b / c| \le 10^{-6}$.

Constraints

Your solution will be tested on a set of test groups, each worth a number of points. Each test group contains a set of test cases. To get the points for a test group you need to solve all test cases in the test group. Your final score will be the maximum score of a single submission.

Group

Points

Limits

1

25

$1 \le a, b, c \le 10$

2

25

$1 \le a, b, c \le 10\, 000$

3

25

$1 \le a, b \le 10^9, c = 1$

4

25

$1 \le a, b, c \le 10^9$

Sample Input 1 Sample Output 1
3 5 7
2.142857142857142857
Sample Input 2 Sample Output 2
9999 9876 1
98750124
Sample Input 3 Sample Output 3
123456789 987654321 1
121932631112635269.000000000000000000
Sample Input 4 Sample Output 4
123456789 987654321 7
17418947301805038.428571428571428571

Please log in to submit a solution to this problem

Log in