Problem K
Simple Arithmetic
Languages
en
et
is
ja
lv
pl
ru
sv
You are given three integers $a, b, c$ ($1 \le a, b, c \le 10^9$). Compute $a \cdot b / c$, with an absolute precision of $10^{-6}$.
Input
The first and only line of input contains the three integers $a, b, c$ separated by a single space.
Output
Output a single floating point number. It must differ from $a \cdot b / c$ by at most $10^{-6}$ in absolute value, i.e., it should obey $|x - a \cdot b / c| \le 10^{-6}$.
Constraints
Your solution will be tested on a set of test groups, each worth a number of points. Each test group contains a set of test cases. To get the points for a test group you need to solve all test cases in the test group. Your final score will be the maximum score of a single submission.
Group |
Points |
Limits |
1 |
25 |
$1 \le a, b, c \le 10$ |
2 |
25 |
$1 \le a, b, c \le 10\, 000$ |
3 |
25 |
$1 \le a, b \le 10^9, c = 1$ |
4 |
25 |
$1 \le a, b, c \le 10^9$ |
Sample Input 1 | Sample Output 1 |
---|---|
3 5 7 |
2.142857142857142857 |
Sample Input 2 | Sample Output 2 |
---|---|
9999 9876 1 |
98750124 |
Sample Input 3 | Sample Output 3 |
---|---|
123456789 987654321 1 |
121932631112635269.000000000000000000 |
Sample Input 4 | Sample Output 4 |
---|---|
123456789 987654321 7 |
17418947301805038.428571428571428571 |