Chuck

You are given an matrix of $R$ rows and $C$ columns. All elements of the matrix have absolute value smaller than or equal to $10^4$. You may perform the following operations:

Operation

Notation

Example

 

Rotate $i$-th row of the matrix $k$ elements right ($1 \leq i \leq R$, $1 \leq k < C$).

$\mathrm{rotR}\ i\ k$

$\mathrm{rotR}\ 3\ 1$

$ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 9 & 7 & 8 \\ 10 & 11 & 12 \end{pmatrix} $

Rotate $j$-th column of the matrix $k$ elements down ($1 \leq j \leq C$, $1 \leq k < R$).

$\mathrm{rotS}\ j\ k$

$\mathrm{rotS}\ 3\ 1$

$ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 2 & 12 \\ 4 & 5 & 3 \\ 7 & 8 & 6 \\ 10 & 11 & 9 \end{pmatrix} $

Multiply all elements in the $i$-th row by $-1$, if and only if none of them were multiplied before ($1 \leq i \leq R$).

$\mathrm{negR}\ i$

$\mathrm{negR}\ 2$

$ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 2 & 3 \\ -4 & -5 & -6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} $

Multiply all elements in the $j$-th column by $-1$, if and only if none of them were multiplied before ($1 \leq j \leq C$).

$\mathrm{negS}\ j$

$\mathrm{negS}\ 1$

$ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} \mapsto \begin{pmatrix} -1 & 2 & 3 \\ -4 & 5 & 6 \\ -7 & 8 & 9 \\ -10 & 11 & 12 \end{pmatrix} $

Table 1: Allowed operations

Using a limited number of these operations, you need to maximize the sum of all the elements of the matrix.

Input

The first line of input contains two integers $R$ and $C$ ($1 \leq R, C \leq 100$), the number of rows and columns. The next $R$ lines contain $C$ integers each. All integers are by their absolute value smaller than $10^4$.

Output

The first line of output should contain two integers, the maximal sum obtainable and the number of operations used. We shall call this number $T$, and it must hold that $T \leq 5RC$. The next $T$ lines should contain any sequence of operations leading to the sum. Each operation should follow the notation defined in Table 1. For details look at sample test cases.

Sample Input 1 Sample Output 1
3 4
1 -2 5 200
-8 0 -4 -10
11 4 0 100
345 2
rotS 2 1
negR 2
Sample Input 2 Sample Output 2
3 3
8 -2 7
1 0 -3
-4 -8 3
34 4
rotR 1 1
rotS 3 1
negR 2
negR 3