Museum
In a new wing of the Rijksmuseum in Amsterdam, there is an exhibition of world treasures. The new wing of the museum consists of rectangular rooms. Each room contains exactly one treasure, where each treasure is placed on a square pedestal which is surrounded by glass and wood.
The curator of the Rijksmuseum is intensely worried about treasures being stolen from the new wing of the museum. He decides to place as many distinct security systems as possible in each of the rooms. A security system is composed out of three identical parts, where each part sends an infrared laser beam and has two receivers for detecting the beams sent out by the two other parts. A security system is functional when its parts are placed such that the laser beams form a triangle. In addition, none of the beams forming the triangle is allowed to be obstructed by the pedestal. If there are two security systems in a room that form the same triangle, they are not distinct.
The security systemâ€™s parts can only be installed on the pillars that are placed against the walls of the room. There is a pillar placed against the wall of the room per every meter of the wall. Also, a pillar is placed in each corner of the room.
The curator wishes to know the maximum number of distinct security systems that can be installed in each of the rooms of the museumâ€™s new wing.
For this problem, assume that the pillars are pointlike objects, that an infinite number of parts can be placed on a single pillar and that height is no factor for this problem.
Given the length and width of a room plus the width and location of the treasure pedestal, determine the maximum number of security systems that can be installed in the given room.
Input
The input starts with a line containing an integer $T$ ($1 \leq T \leq 31$), the number of test cases. Then for each test case:

One line containing two spaceseparated integers $L$ $(1 \leq L \leq 100)$ and $W$ $(1 \leq W \leq 100)$, the length and width of the room in meters, respectively.

One line containing three spaceseparated floating point numbers $X$ $(10^{1} \leq X \leq L2 \cdot 10^{1})$, $Y$ $(10^{1} \leq Y \leq W2 \cdot 10^{1})$ and $W_ s$ $(10^{1} \leq W_ s \leq 1002 \cdot 10^{1})$, the $x$ coordinate, $y$ coordinate and width of the square pedestal all in meters. The $x$ and $y$ coordinates denote the topleft corner of the pedestal. $(x=0,y=0)$ denotes the topleft corner of the room.
The square pedestal will always fit inside the room and will always be placed such that there is at least a $10^{1}$ meters distance between the pedestal and the walls of the room. It is guaranteed that the distance from each corner of the pedestal to a potential laser beam (i.e. a line between two pillars) is at least $10^{4}$ meters.
Output
For each test case, output one line containing a single integer: the maximum number of security systems that can be installed in the room.
Sample Input 1  Sample Output 1 

3 1 1 .80 .12 .1 2 2 .6424600 .4334300 0.6500800 2 4 .10 .19 .3 
2 13 158 