A town is often divided into zones, e.g, industrial zones,
commercial zones, and residential zones. If some residential
zone is very far from all commercial zones, then the people
living there will have a long journey whenever they want to do
some shopping, and this is undesirable.
The input will consist of an $n\times n$ grid of square zones. Each
zone is labeled 1 (residential),
2 (industrial), or 3 (commercial). When travelling from one zone
to another you are allowed to move north, east, south or west,
and the distance travelled is the number of zone boundaries you
traverse. So the distance between two adjacent zones is
$1$, and the distance from
the zone in square $(1,1)$
(the most southwesterly zone) to the zone in square
$(2,3)$ is $3$ (one step east and two steps
north). You may never move off the grid.
Your task is to find the longest distance one has to travel
from a residential zone to get to the commercial zone closest
to that residential zone.
Input
The first line of input contains an integer $n$, $2\leq n\leq 1500$, followed by
$n$ lines of length
$n$ giving the map of the
city zones as an $n\times
n$ matrix where each entry is 1, 2, or 3 depending on zone type. You can assume that
the city has zones of all three types.
Output
Output a single integer $d$, the largest distance from a
residential zone to its closest commercial zone.
Sample Input 1 
Sample Output 1 
4
1223
2123
2213
3212

3

Sample Input 2 
Sample Output 2 
2
12
33

1
