Problem B
Exponial

Exponentiation: $42^{2016} = \underbrace{42 \cdot 42 \cdot \ldots \cdot 42}_{2016\text { times}}$.

Factorials: $2016! = 2016 \cdot 2015 \cdot \ldots \cdot 2 \cdot 1$.
In this problem we look at their lesserknown lovechild the exponial, which is an operation defined for all positive integers $n$ as
\[ \operatorname {exponial}(n) = n^{(n1)^{(n2)^{\cdots ^{2^{1}}}}}. \]For example, $\operatorname {exponial}(1) = 1$ and $\operatorname {exponial}(5) = 5^{4^{3^{2^1}}} \approx 6.206 \cdot 10^{183230}$ which is already pretty big. Note that exponentiation is rightassociative: $a^{b^ c} = a^{(b^ c)}$.
Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes $\operatorname {exponial}(n) \bmod m$ (the remainder of $\operatorname {exponial}(n)$ when dividing by $m$).
Input
The input consists of two integers $n$ ($1 \le n \le 10^9$) and $m$ ($1 \le m \le 10^9$).
Output
Output a single integer, the value of $\operatorname {exponial}(n) \bmod m$.
Sample Input 1  Sample Output 1 

2 42 
2 
Sample Input 2  Sample Output 2 

5 123456789 
16317634 
Sample Input 3  Sample Output 3 

94 265 
39 